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Overview - What is Magnetic Separation?
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Overview - Why Magnetic Separation?

• Very efficient removal of magnetic particles (kaolin clay, TiO2)

• Clever chemistry to magnetically capture target molecules
• New market applications - wastewater treatment, water 

purification, medical/biological separations, capture target compound 
• Potential near term success - heavy metal removal from mine 

drainage
– 1000’s of mines with heavy metal drainage issues
– significant market opportunity if cost effective
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Overview - Why HTS Magnetic Separation?

• Reduced electrical usage compared to resistive coil 
technology

• Can be portable with cryogen-free magnet (important for 
temporary cleanup or remote site)

• Smaller footprint than more conventional technologies-
potentially less expensive because less real estate

• Fewer chemicals (safer) - ferrite process vs. conventional 
precipitation technique

• Environmentally friendly - ferrite process produces          
non-hazardous, non-leachable waste

• Cheaper to dispose of waste 
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Overview - Magnetic Separation 
SPI Program

• HTS magnetic separator offers significant operational 
energy savings

• DuPont business plan calls for development of new 
applications of HGMS that benefit from energy savings

• DuPont capitalizing on LANL’s 10 years experience in 
magnetic separation:
– process development
– HTS magnetic separation equipment
– chemical analytical equipment/expertise
– multi-disciplinary approach

• chemists, chemical engineers, magnetics, SC, modeling
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Research Integration

• Regular technical interchanges with DuPont, 
Wilmington

• Collaboration with New Mexico State University

• Jon Bernard, DuPont employee
– Stationed full-time at LANL
– fully equipped laboratory at LANL Research Park
– integrated into LANL magnetic separation team
– access to LANL analytical equipment & expertise
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HGMS
A Two-Step Process
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Step 1 - Magnetite Formation

• FeOFe2O3 normally written as Fe3O4

• 1 Fe2+ : 2 Fe3+ stoichiometry necessary
• GR forms readily but has a low magnetic susceptibility 

and is air (O2) sensitive
• Dehydration is the Rate Determining Step (RDS)

Step 1 – Formation of Green Rust (GR)

Fe2+ +  2 Fe3+ +  8 OH- → GR (solid)

Step 2 – Dehydration to form magnetite

GR (solid)  → FeOFe2O3 (solid)  +  4 H2O
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Formation of Metal Substituted Magnetite

M2+ +  2 Fe3+ +  8 OH- ⇄ MO•Fe2O3 (solid) +  4 H2O

or

Fe2+ +   Fe3+ +  M3+ +  8 OH- ⇄ FeO•FeMO3 (solid) +  4 H2O

• M = Metal (ie. Cu2+, Mn2+, Cd2+, Pb2+, Ag+, As3+, etc.)  

• Substituted magnetite = Ferrite
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Selection of a Method to Synthesize 
Magnetite/Ferrite

FeSO4 (solid) → Fe2+

Fe2+ + 2OH- Fe(OH)2 (solid)
6 Fe(OH)2 (solid) + O2 (air) → 2 Fe3O4 (solid) + 6 H2O

In-situ aerial oxidation:
• Produces consistently high quality ferrite
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Magnetite Phase Diagram

Kiyama, M. Bull. Chem. Soc. Jpn.  1974, 47 1646-1650.

• Difficult to form 
magnetite below 40ºC
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Our Approach – Magnetic Seeding

Magnetic seeding – A template effect:

• Produces a suitably magnetic particle

• Allows for magnetic separation

• Green rust can be dealt with post-magnetic 
separation

Seed

GR
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Step 1 – Experimental Details 

1. Take a sample of wastewater and stir

2. Add magnetite seed and disperse

3. Add Fe2+ and dissolve

4. Add NaOH to pH ~ 10

5. Bubble air through suspension for      
15 min

6. Can filter to sample solid phase or 
“cleaned” water for analysis

Wastewater 
+ seed

Green 
Rust/Seed 
particles after 
reaction
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FY03 Results
Magnetite Seeding Experiments

The experiments:

1. 50 ppm seed, 50-1000 ppm Fe2+

2. 50 ppm Fe2+, 50-250 ppm seed

Key findings:

z Seed/GR particle forms with good magnetic response 
z Particles suitable for magnetic separation

� Will allow GR to ferrite conversion after 
solid/liquid separation
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Product Analysis:
Converting Green Rust to Ferrite

100 ppm Fe2+

50 ppm seed
Solid/liquid
separation

Dry in air

Dry under N2

Wastewater sample
containing metals

solids

“cleaned” water Collect

Solids:
• XRD (X-ray diffraction)
• TCLP test (toxicity characteristic leaching protocol)

Liquid:
• ICP-AES (inductively coupled plasma – atomic emission spectroscopy)
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XRD: 

• Magnetite/ferrite present only in the product dried under               
nitrogen

TCLP:

• Product dried under nitrogen passes TCLP test

Findings:

• GR to ferrite conversion is viable after magnetic separation

• Ferrite stability allows for inexpensive disposal in a non-hazardous 
waste landfill 

FY03 Results
Conversion of Green Rust to Ferrite - Analysis
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FY03 Results
Does Ferrite Synthesis Remove Typical Metals?
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• Initial metal concentrations of 
1-30 ppm

• Representative metals chosen 
(non RCRA)
RCRA = Resource conservation and Recovery Act

• Also works for heavy metals 
of current interest such as 
arsenic, lead and cadmium  

• Residual concentrations meet NPDES limits for 
discharge (NPDES = National Pollution Discharge and Elimination System)
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Magnetic Separation – Step 2
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FY03 Results
HTS Magnet

• 624 m of Bi-2223/Ag superconducting tape
• Overall coil dimensions of 18 cm OD, 15.5 cm 

height and 5 cm ID
• Cooled by a two stage Gifford-McMahon 

cryocooler
• At 40 K the magnet can generate a central field of 

2.0 T at a current of 120 A
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FY03 Results
Particulate Breakthrough

Seed/GR
particle

HGMS

• Breakthrough concentrations measured using a turbidimeter
� Breakthrough defined as 1 ppm

• Seed readily trapped in separator
• GR shears from seed
• Increasing seed/GR stability should increase breakthrough 
volumes

Seed
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There are Numerous Separator Performance 
Variables to be Addressed

• Particle size
• Particle concentrations
• Wastewater pH
• Type of stainless steel wool (ultra-fine to coarse)
• Applied magnetic field strength
• Flow velocity in column
• Residence time in the column
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FY03 Results
Effect of the Rate of Air Bubbling During Synthesis

Conclusions

• Need to control rate of air 
bubbling

• Influences “quality” of 
seed/GR particle in step 1
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FY03 Results
Effect of Aging in a Magnetic Field Prior to HGMS

Conclusions:

• Aging in a magnetic field 
dramatically increases 
breakthrough volume

• Magnetic aging increases 
the stability of the seed/GR 
particle
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FY03 Results
Effect of Applied Field

Conclusions:

• Higher field strengths result 
in larger magnetic forces

• Larger breakthrough 
volumes at higher field
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FY03 Results
Effect of Flow Velocity in the Column
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Conclusions:

• Breakthrough volume 
increases with decreasing 
flow velocity in the column

• But: Process takes longer
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FY03 Results
Summary

Step 1: Synthesis

• Metals can be removed from wastewater using our ferrite 
synthetic procedure
• Effluent water can be released to the environment
• Ferrites are environmentally stable and can be disposed of 
inexpensively 

Step 2: HGMS

• Our seeded ferrite process allows us to do a magnetic 
separation prior to green rust conversion to ferrite
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FY03 Performance
CRADA Tasks/Deliverables

All CRADA deliverables have been met

9 CRADA established 6/17/2002
9 Jon Bernard hired
9 Lab & office established/equipped in Research Park
9 Determined area/market of focus (CRADA                         

deliverable - report)
9 Established feasibility of low temperature ferrite 

process (CRADA deliverable - report)
9 Optimizing HTS process – as per CRADA plan
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FY04 Plans
CRADA Tasks/Deliverables

• Determine controlling parameters and ranges 
for ferrite process - step 1 (parameter sensitivity 
evaluation)

• Optimize ferrite & HGMS processes (optimize 
process for specific application/site, determine how process 
variables might change for different conditions/application)

• Determine scaling issues from laboratory to 
pilot plant (quantities of chemicals, processing times, 
equipment cost)

• Establish pilot plant partner (demonstrate the 
technology in the field)


